Publications">Publications | Risk-Based Authentication

We Published a Lot of Papers and Articles on Risk-Based Authentication

Here’s an overview of them all, which you can download here.

Privacy

Privacy Considerations for Risk-Based Authentication Systems
Stephan Wiefling, Jan Tolsdorf, and Luigi Lo Iacono
IWPE '21, co-located with IEEE EuroS&P '21
 
Abstract

Risk-based authentication (RBA) extends authentication mechanisms to make them more robust against account takeover attacks, such as those using stolen passwords. RBA is recommended by NIST and NCSC to strengthen password-based authentication, and is already used by major online services. Also, users consider RBA to be more usable than Two-Factor Authentication and just as secure. However, users currently obtain RBA's high security and usability benefits at the cost of exposing potentially sensitive personal data (e.g., IP address or browser information). This conflicts with user privacy and requires to consider user rights regarding the processing of personal data.

We outline potential privacy challenges regarding different attacker models and propose improvements to balance privacy in RBA systems. To estimate the properties of the privacy-preserving RBA enhancements in practical environments, we evaluated a subset of them with long-term data from 780 users of a real-world online service. Our results show the potential to increase privacy in RBA solutions. However, it is limited to certain parameters that should guide RBA design to protect privacy. We outline research directions that need to be considered to achieve a widespread adoption of privacy preserving RBA with high user acceptance.


Security

What's in Score for Website Users: A Data-Driven Long-Term Study on Risk-Based Authentication Characteristics
Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono
FC '21
 
Abstract

Risk-based authentication (RBA) aims to strengthen password-based authentication rather than replacing it. RBA does this by monitoring and recording additional features during the login process. If feature values at login time differ significantly from those observed before, RBA requests an additional proof of identification. Although RBA is recommended in the NIST digital identity guidelines, it has so far been used almost exclusively by major online services. This is partly due to a lack of open knowledge and implementations that would allow any service provider to roll out RBA protection to its users.

To close this gap, we provide a first in-depth analysis of RBA characteristics in a practical deployment. We observed N=780 users with 247 unique features on a real-world online service for over 1.8 years. Based on our collected data set, we provide (i) a behavior analysis of two RBA implementations that were apparently used by major online services in the wild, (ii) a benchmark of the features to extract a subset that is most suitable for RBA use, (iii) a new feature that has not been used in RBA before, and (iv) factors which have a significant effect on RBA performance. Our results show that RBA needs to be carefully tailored to each online service, as even small configuration adjustments can greatly impact RBA's security and usability properties. We provide insights on the selection of features, their weightings, and the risk classification in order to benefit from RBA after a minimum number of login attempts.


Usability

Verify It’s You: How Users Perceive Risk-Based Authentication
Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono
IEEE Security and Privacy (November/December '21)
 
Abstract

Risk-based authentication (RBA) is an adaptive security measure to strengthen password-based authentication against account takeover attacks. Our study on 65 participants shows that users find RBA more usable than Two-Factor Authentication equivalents and more secure than password-only authentication. We identify pitfalls and provide guidelines for putting RBA into practice.

More Than Just Good Passwords? A Study on Usability and Security Perceptions of Risk-Based Authentication
Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono
ACSAC '20
 
Abstract

Risk-Based Authentication (RBA) is an adaptive security measure to strengthen password-based authentication. RBA monitors additional features during login, and when observed feature values differ significantly from previously seen ones, users have to provide additional authentication factors such as a verification code. RBA has the potential to offer more usable authentication, but the usability and the security perceptions of RBA are not studied well.

We present the results of a between-group lab study (n=65) to evaluate usability and security perceptions of two RBA variants, one 2FA variant, and password-only authentication. Our study shows with significant results that RBA is considered to be more usable than the studied 2FA variants, while it is perceived as more secure than password-only authentication in general and comparably secure to 2FA in a variety of application types. We also observed RBA usability problems and provide recommendations for mitigation. Our contribution provides a first deeper understanding of the users' perception of RBA and helps to improve RBA implementations for a broader user acceptance.

Evaluation of Risk-Based Re-Authentication Methods
Stephan Wiefling, Tanvi Patil, Markus Dürmuth, and Luigi Lo Iacono
IFIP SEC '20
 
Abstract

Risk-Based Authentication (RBA) is an adaptive security measure that improves the security of password-based authentication by protecting against credential stuffing, password guessing, or phishing attacks. RBA monitors extra features during login and requests for an additional authentication step if the observed feature values deviate from the usual ones in the login history. In state-of-the-art RBA re-authentication deployments, users receive an email with a numerical code in its body, which must be entered on the online service. Although this procedure has a major impact on RBA's time exposure and usability, these aspects were not studied so far.

We introduce two RBA re-authentication variants supplementing the de facto standard with a link-based and another code-based approach. Then, we present the results of a between-group study (N=592) to evaluate these three approaches. Our observations show with significant results that there is potential to speed up the RBA re-authentication process without reducing neither its security properties nor its security perception. The link-based re-authentication via "magic links", however, makes users significantly more anxious than the code-based approaches when perceived for the first time. Our evaluations underline the fact that RBA re-authentication is not a uniform procedure. We summarize our findings and provide recommendations.


State of Practice

Is This Really You? An Empirical Study on Risk-Based Authentication Applied in the Wild
Stephan Wiefling, Luigi Lo Iacono, and Markus Dürmuth
IFIP SEC '19
 
Abstract

Risk-based authentication (RBA) is an adaptive security measure to strengthen password-based authentication. RBA monitors additional implicit features during password entry such as device or geolocation information, and requests additional authentication factors if a certain risk level is detected. RBA is recommended by the NIST digital identity guidelines, is used by several large online services, and offers protection against security risks such as password database leaks, credential stuffing, insecure passwords and large-scale guessing attacks. Despite its relevance, the procedures used by RBA-instrumented online services are currently not disclosed. Consequently, there is little scientific research about RBA, slowing down progress and deeper understanding, making it harder for end users to understand the security provided by the services they use and trust, and hindering the widespread adoption of RBA.

In this paper, with a series of studies on eight popular online services, we (i) analyze which features and combinations/classifiers are used and are useful in practical instances, (ii) develop a framework and a methodology to measure RBA in the wild, and (iii) survey and discuss the differences in the user interface for RBA. Following this, our work provides a first deeper understanding of practical RBA deployments and helps fostering further research in this direction.


Black-Box Testing Tool (HOSIT)

Even Turing Should Sometimes Not Be Able To Tell: Mimicking Humanoid Usage Behavior for Exploratory Studies of Online Services
Stephan Wiefling, Nils Gruschka, and Luigi Lo Iacono
NordSec '19
 
Abstract

Online services such as social networks, online shops, and search engines deliver different content to users depending on their location, browsing history, or client device. Since these services have a major influence on opinion forming, understanding their behavior from a social science perspective is of greatest importance. In addition, technical aspects of services such as security or privacy are becoming more and more relevant for users, providers, and researchers. Due to the lack of essential data sets, automatic black box testing of online services is currently the only way for researchers to investigate these services in a methodical and reproducible manner. However, automatic black box testing of online services is difficult since many of them try to detect and block automated requests to prevent bots from accessing them.

In this paper, we introduce a testing tool that allows researchers to create and automatically run experiments for exploratory studies of online services. The testing tool performs programmed user interactions in such a manner that it can hardly be distinguished from a human user. To evaluate our tool, we conducted - among other things - a large-scale research study on Risk-based Authentication (RBA), which required human-like behavior from the client. We were able to circumvent the bot detection of the investigated online services with the experiments. As this demonstrates the potential of the presented testing tool, it remains to the responsibility of its users to balance the conflicting interests between researchers and service providers as well as to check whether their research programs remain undetected.