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Abstract—Risk-based authentication (RBA) extends authen-
tication mechanisms to make them more robust against ac-
count takeover attacks, such as those using stolen passwords.
RBA is recommended by NIST and NCSC to strengthen
password-based authentication, and is already used by major
online services. Also, users consider RBA to be more usable
than two-factor authentication and just as secure. However,
users currently obtain RBA’s high security and usability
benefits at the cost of exposing potentially sensitive personal
data (e.g., IP address or browser information). This conflicts
with user privacy and requires to consider user rights
regarding the processing of personal data.

We outline potential privacy challenges regarding differ-
ent attacker models and propose improvements to balance
privacy in RBA systems. To estimate the properties of the
privacy-preserving RBA enhancements in practical environ-
ments, we evaluated a subset of them with long-term data
from 780 users of a real-world online service. Our results
show the potential to increase privacy in RBA solutions.
However, it is limited to certain parameters that should guide
RBA design to protect privacy. We outline research directions
that need to be considered to achieve a widespread adoption
of privacy preserving RBA with high user acceptance.

Index Terms—Password, Risk-based Authentication, Usable
Security and Privacy, Big Data Analysis

1. Introduction

Passwords are still predominant for authentication with
online services [25], although new threats are constantly
emerging. Credential stuffing and password spraying at-
tacks [14] use leaked login credentials (username and
password) sourced from data breaches, and try them
in some way on (other) online services. These attacks
are very popular today [2] since attackers can automate
them with little effort. Major online services responded
to this threat with implementing risk-based authentication
(RBA) [36], aiming to strengthen password-based authen-
tication with little impact on the user.

Risk-Based Authentication (RBA). RBA determines
whether a login attempt is a legitimate one or an account
takeover attempt. To do so, RBA monitors additional
features when users submit their login credentials. Popular
features range from network (e.g., IP address), device
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(e.g., smartphone model and operating system), or client
(e.g., browser vendor and version), to (behavioral) biomet-
ric information (e.g., login time) [34], [36]. Based on the
feature values and those of previous logins, RBA calcu-
lates a risk score. An access threshold typically classifies
the score into low, medium, and high risk [12], [15], [21].
On a low risk (e.g., usual device and location), the RBA
system grants access with no further intervention. On a
medium or higher risk (e.g., unusual device and location),
RBA requests additional information from the user, e.g.,
verifying the email address. After providing the correct
proof, access is granted.

RBA is considered a scalable interim solution when
passwords cannot simply be replaced by more secure
authentication methods in many cases [34], [35]. The
National Institute of Standards and Technology (NIST,
USA) and National Cyber Security Centre (NCSC, UK)
recommend RBA to mitigate attacks involving stolen pass-
words [13], [23]. Beyond that, users found RBA more
usable than equivalent two-factor authentication (2FA)
variants and comparably secure [35]. Also, in contrast to
2FA, RBA both offers good security and rarely requests
additional authentication in practice [34], reducing the
burden on users.

Research Questions. However, users obtain the security
and usability gain of RBA at the cost of disclosing more
potentially sensitive data with a personal reference, such
as IP addresses and browser identifiers. Therefore, user
privacy is at risk when RBA databases are forwarded
or breached, as additional data besides usernames would
potentially allow to identify individuals.

More and more data protection laws aim to protect
users from massive data collection by online services.
Considering that, we wondered whether and to what extent
the integration of RBA systems complies with the princi-
ples of modern data protection. We also wondered which
trade-offs are possible to balance security and privacy
goals.

To further investigate RBA’s privacy aspects, we for-
mulated the following research questions:
RQ1: a) In what ways can RBA features be stored to

increase the user privacy?
b) How can RBA features be stored to protect user

privacy in terms of data breaches?
RQ2: To what extent can a RBA feature maintain good

security while preserving privacy in practice?

Contributions. We propose and discuss five privacy en-
hancements that can be used by RBA models used by the
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majority of deployments found in practice. To estimate
their usefulness in practice, we evaluated a subset of these
enhancements on a RBA feature that is highly relevant
in terms of security and privacy, i.e., the IP address. We
evaluated with a data set containing the login history of
780 users on a real-world online service for over 1.8 years.

Our results show for the first time that it is possible to
increase feature privacy while maintaining RBA’s security
and usability properties. However, increasing privacy is
limited to certain conditions that need to be considered
while designing the RBA system. We also identified future
challenges and research directions that might arise with a
widespread RBA adoption in the future.

The results support service owners to provide data pro-
tection compliant RBA solutions. They assist developers
in designing RBA implementations with increased privacy.
Researchers gain insights on how RBA can become more
privacy friendly, and further research directions.

2. Background

In the following section, we provide a brief introduc-
tion to RBA and explain how the use of RBA correlates
with the several privacy principles defined by industry
standards and legislation.

2.1. RBA Model

Since RBA is not a standardized procedure, multiple
solutions exist in practice. We focus on the implementa-
tion by Freeman et al. [12], since it performed best in a
previous study [34]. Also, this RBA model is known to be
widely used, e.g., by popular online services like Amazon,
Google, and LinkedIn [34], [36].

The model calculates the risk score S for a user u and
a set of feature values (FV 1, ..., FV d) with d features as:

Su(FV ) =

(︄
d∏︂

k=1

p(FV k)

p(FV k|u, legit)

)︄
p(u|attack)
p(u|legit)

(1)

S has the probabilities p(FV k) that a feature value
appears in the global login history of all users, and
p(FV k|u, legit) that a legitimate user has this feature
value in its own login history. The probability p(u|attack)
describes how likely the user is being attacked, and
p(u|legit) describes how likely the legitimate user is
logging in.

2.2. Regulatory Foundations

In the past few years, the introduction of new data
protection laws, such as the General Data Protection Reg-
ulation (GDPR) [8] and the California Consumer Privacy
Act (CCPA) [30], dramatically changed the way online
services (i.e., data controllers) process their users’ data.
Formerly loose recommendations on handling user data
have been replaced by clear and binding data protec-
tion principles, which data controllers must adhere to.
However, the details and scope of the principles vary
between jurisdictions. For internationally operating data
controllers, this poses the problem that their data process-
ing operations must be designed to be compatible with

different requirements. Fortunately, the privacy framework
specified in ISO 29100:2011 [16] already compiles an
intersection of privacy principles from data protection
laws worldwide. Thus, it provides data controllers a solid
basis for designing legally compliant data processing op-
erations that can be tailored to the details of different
jurisdictions. We outline the requirements for the design
of RBA systems based on the privacy principles defined
in ISO 29100:2011, aiming at compatibility with different
jurisdictions.

Applicability of Privacy Principles. Generally speaking,
the privacy principles defined in established privacy laws
and frameworks aim to protect the privacy of individuals.
Thus, they only apply to data with a personal reference.
Such data are called, e.g., “personal data” (GDPR [8]),
“personal information” (CCPA [30]), or “personally iden-
tifiable information” (PII) (ISO [16]). The definitions are
very similar and usually refer to “any information that
(a) can be used to identify [an individual] to whom such
information relates, or (b) is or might be directly or
indirectly linked to [an individual]” [16].

The data processed by RBA certainly fall within this
definition, since implementations rely on features that
already serve as (unique) identifiers by themselves (e.g.,
IP address) [36]. Also, the risk score calculated by RBA
represents an identifier by itself, as it constitutes a set
of characteristics that uniquely identifies an individual.
Therefore, RBA has to comply with ISO 29100:2011’s
privacy principles discussed below.

Consent and Choice. In general, data controllers must
ensure the lawfulness of data processing. While most
jurisdictions recognize user consent as a lawful basis,
applicable laws may allow processing without consent.
Depending on the assets associated with a user account,
data controllers may argue that RBA use is required to
comply with the obligation to implement appropriate tech-
nical safeguards against unauthorized access. Nonetheless,
to ensure compliance, providers should design RBA mech-
anisms with consent in mind and provide their users with
clear and easy-to-understand explanations.

Collection Limitation and Data Minimization. Data
controllers must limit the PII collection and processing
to what is necessary for the specified purposes. RBA
feature sets should therefore be reviewed for suitability
with redundant or inappropriate features removed [34].
This includes considering using pseudonymized data for
RBA and disposing of the feature values when they are
no longer useful for the purpose of RBA. In practice, this
creates the challenge to not reduce a risk score’s reliability.

Use, Retention, and Disclosure Limitation. The data
processing must be limited to purposes specified by the
data controller, and data must not be disclosed to recipi-
ents other than specified. RBA should ensure that features
cannot be used for purposes other than the calculation
of risk scores. Moreover, after a feature value becomes
outdated, it should be securely destroyed or anonymized.
We would point out that privacy laws do not apply to
anonymized data and could therefore serve data controllers
for developing and testing purposes beyond the retention
period specified in their privacy statements.

Accuracy and Quality. Data controllers must ensure that
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the processed data are accurate and of quality. This is
not only due to their own business interests, but also
because data subjects have a right to expect their data
being correct. This directly affects RBA, since it has the
power to deny a significant benefit to users (i.e., access to
their user account) with potentially significant harm. Data
controllers must hence ensure by appropriate means that
the stored feature values are correct and valid.

Individual Participation and Access. Data controllers
must allow data subjects to access and review their PII.
For RBA, this means that users should be allowed to be
provided with a copy of the feature values used.

Information Security. Data controllers are obliged to
protect PII with appropriate controls at the operational,
functional, and strategic level against risks. These include,
but are not limited to, risks associated with unauthorized
access or processing and denial of service. Privacy laws
demand extensive protections in this regard, “taking into
account the state of the art, the costs of implementation
and the nature, scope, context and purposes of processing
as well as the risk of varying likelihood and severity for
the rights and freedoms of natural persons” (Art. 32 (1)
GDPR). Since RBA risk scores do not necessarily rely
on evaluating plain text feature values [34], the collected
data should be stored in an appropriate pseudonymized,
masked, truncated, or encrypted form, depending on the
RBA implementation. Moreover, data controllers should
implement additional technical and organizational mea-
sures as needed, and be able to ensure the integrity,
availability, and resilience of RBA.

Accountability and Privacy Compliance. Data con-
trollers should inform data subjects about privacy-related
policies, transfers of PII to other countries, and data
breaches. Data controllers should also implement organi-
zational measures to help them verify and demonstrate le-
gal compliance. These include, but are not limited to, risk
assessments and recovery procedures. RBA implementa-
tions should therefore consider the worth of RBA features
to both attackers and data subjects, and the recovery from
data breaches. This is crucial in order not to undermine
the security of user accounts and their associated assets.

3. Privacy Enhancements (RQ1)

To comply with the privacy principles and derived data
protection requirements, service owners should consider
mechanisms to increase privacy in their RBA implemen-
tations. In the following, we introduce threats and their
mitigation to increase privacy properties of RBA features.

3.1. Feature Sensitivity and Impact Level

RBA feature sets always intend to distinguish attack-
ers from legitimate users. In doing so, the features may
contain sensitive PII. However, not only do users per-
ceive such PII differently regarding their sensitivity [28].
Their (unintended) disclosure could also have far-reaching
negative consequences for user privacy. Developers and
providers should therefore determine the impact from a
loss of confidentiality of the RBA feature values. Specif-
ically, the following aspects need consideration [20]:

Identifiability and Linkability. RBA feature sets should
be evaluated regarding their ability to identify natural
persons behind them. In particular, RBA systems that rely
on intrusive online tracking methods, such as browser
fingerprinting, store sensitive browser-specific information
that form a linked identifier. In the event of losing confi-
dentiality, the features would allow clear linkage between
profiles at different online services, despite users using
different login credentials or pseudonyms. Depending on
the service, this could result in negative social or le-
gal consequences for individuals. It could also enable
more extensive and unintended activity tracking, and de-
anonymizing information associated with user accounts.
Previous work found that powerful RBA feature sets do
not require to uniquely identify users when focusing on the
detection of account takeover attempts [34]. Also, users
are more willing to accept the processing of sensitive
information when they are certain that it is anonymous
and does not allow them to be identified [18], [29]. Thus,
the use of non-intrusive features may increase user trust
in online services, too.

Feature Values Sensitivity. Aside from identifying in-
dividuals by RBA feature sets, the individual feature
values may already contain sensitive PII. Sensitive PII
in the scope of RBA may be feature values that are
easily spoofable and can be misused to attack other online
services in the event of a data breach. Sensitive PII may
also refer to data perceived as sensitive by online users.
For example, the most important feature of current RBA
methods, namely the IP address [12], [15], [31], [34], [36],
is perceived as highly sensitive by online users of diverse
cultural backgrounds [3], [19], [28]. Since users are gen-
erally less willing to share data with increased sensitivity,
RBA feature sets should limit the use of sensitive data if
possible, in order to meet user interests.

3.2. Threats

RBA features may contain personal sensitive data,
which has to be protected against attackers. To support
online services in their protection efforts, we introduce
three privacy threat types. We based the threats on those
found in literature and our own observations in practice.

Data Misuse. Online services could misuse their own
RBA feature data for unintended purposes, such as user
tracking, profiling, or advertising [5]. This type of misuse
previously happened with phone numbers stored for 2FA
purposes [33]. While users have to trust online services to
not misuse their data, responsible online services should
also take precautions to minimize chances for miuse sce-
narios or unintended processing, e.g., by internal miscon-
duct or after the company changed the ownership.

Data Forwarding. Online services can be requested or
forced to hand out stored feature data, e.g., to state actors,
advertising networks, or other third parties. Especially
IP addresses are commonly requested [9]. When such
data are forwarded to third parties, the users’ privacy is
breached. For instance, the IP address could be used to
reveal the user’s geolocation or even their identity.

Data Breach. Attackers obtained the database containing
the feature values, e.g., by hacking the online service. As a
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result, online services lost control over their data. Attack-
ers can try to re-identify users based on the feature values,
e.g., by combining them with other data sets. They can
further try to reproduce the feature values and try account
takeover attacks on a large scale, similar to credential
stuffing. On success, they could access sensitive user data
stored on the online service, e.g., private messages.

3.3. Mitigation

Online services can implement several measures to
mitigate the outlined privacy threats. We propose five
measures that are based on methods found in related
research fields, as well as privacy regulations and our own
observations with the selected RBA model (see Section 2).
Based on the introduced RBA model, we considered all
feature values as categorical data, in order to calculate the
probabilities. When this condition is met, the proposed
measures are also applicable to other RBA models [34].

As an example for practical solutions, we describe how
the considerations can be applied to the IP address feature,
with regard to the IPv4 address. We chose this feature
since it is both considered the most important RBA feature
in terms of security to date and sensitive re-linkable data
in terms of privacy (see Section 3.1).

3.3.1. Aggregating. The RBA model only depends on
feature value frequencies. To minimize data and limit
misuse [16], we can aggregate or reorder feature data
in the login history without affecting the results. The
data set would then reveal how often a feature combina-
tion occurred, but not its chronological order. Removing
this information can mitigate re-identification in login
sequences.

3.3.2. Hashing. A cryptographic hash function, such as
SHA-256, transforms a data input of arbitrary value to an
output of fixed length. As inverting a hash function is not
possible in theory, attackers need to recalculate all possible
hashing values to restore the input values [17]. Assuming
that the hashes are practically collision-free, using hashed
feature values will produce the same RBA results as with
the original values. This is the case, because the feature
values are only transformed into a different representation.
Therefore, this could be a solution to protect feature data
in terms of the outlined threats.

However, the IPv4 address has 32 bit limited input
values, where some addresses have a specific semantic
and purpose, and cannot be assigned to devices. Thus,
attackers can simply hash all 232− 1 values to restore the
correct IP address. To counteract this problem, we can
append a large random string (salt) to the input value:

H(192.168.1.166 || salt) = 243916...aad132 (2)

Attackers need to guess the salt correctly, which is high
effort when the salt is large. Thus, this mitigation strategy
increases the required guessing time for each feature
value. Taking it a step further, we can even hash the results
multiple times to increase the computation time:

H(H(...H(192.168.1.166 || salt))) = [hash] (3)

This is similar to key derivation strategies used in pass-
word databases [22]. However, we can only use a global

salt for all database entries, as RBA mechanisms need to
be able to identify identical feature values across users
in the database. By increasing the computational cost,
attackers cannot scale attacks as they would have with
the unhashed feature values.

3.3.3. Truncation. A more destructive approach to in-
crease privacy for RBA features is to change or remove
details from their data values. This can reduce the number
of records with unique quasi identifiers. Since the feature
data then becomes less useful for other use cases like
tracking or re-identification, we consider it a measure to
mitigate the privacy threats. Regarding the IP address, we
could set the last bits to zero. For truncating the last eight
bits, for example, this would result in:

Truncate(192.168.1.166, 8 Bit) = 192.168.1.0 (4)

This mechanism is known from IP address anonymization
strategies [6], [7]. However, we can also apply it on other
features, e.g., reducing timing precision or coarse-graining
browser version number in the user agent string [24].
Since we remove information that could potentially iden-
tify an individual, e.g., the device’s internet connection,
this can potentially increase privacy. However, this can
also influence the RBA results, as there are fewer feature
values for attackers to guess.

3.3.4. K-Anonymity. The k-anonymity privacy con-
cept [32] ensures that at least k entries in a data set
have the same quasi identifier values. If attackers obtained
the data set and know a victim’s IP address, they would
not be able to distinguish the person from k other users.
This makes it an effective countermeasure against re-
identification in case of data forwarding and data breaches.

To achieve k-anonymity for RBA, at least k users need
to have the same feature value. To ensure this, we added
potentially missing entries to the RBA login history after
each successful login. We added these entries to random
users to only affect the global login history probabilities
in order to keep a high security level. We created these
users just for this purpose. To retain the global data set
properties, the user count increased gradually to have the
same mean number of login attempts per user.

3.3.5. Login History Minimization. Another approach
is to limit the login history, in terms of the amount of
features and entries, for a number of entries or a constant
time period [16]. A study already showed that few entries
are sufficient to achieve a high RBA protection [34]. In so
doing, we mitigate tracking users for an extended period
of time. However, this can affect the RBA performance
based on the usage pattern of the corresponding online
service. Especially when it is a less-than-monthly-use
online service, we assume that features need to be stored
for a longer period than for daily use websites to achieve
a comparable RBA performance.

4. Case Study Evaluation (RQ2)

Aggregating and hashing, when collision-free, does
not affect the RBA results, as they only change the data
representation for the RBA model. The other approaches,
however, potentially could. To assess their impact on
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RBA behavior in practice, we studied truncation and k-
anonymity using real-world login data. The properties and
limited size of our data set did not allow to reliably test
the login history minimization approach, so we left it
for future work. Nevertheless, we outlined this relevant
privacy consideration for the sake of completeness. We
used the IP address feature as in the other examples.

4.1. Data Set

For the evaluation, we used our long-term RBA data
set, including features of 780 users collected on a real-
world online service [34]. The online service collected
the users’ features after each successful login. The users
signed in 9555 times in total between August 2018 to
June 2020. They mostly logged in daily (44.3%) or several
times a week (39.2%), with a mean of 12.25 times in total.
To improve data quality and validity, we removed all users
who noticed an illegitimate login in their account. The
online service was an e-learning website, which students
used to exercise for study courses and exams. As the
users were mostly located in the same city, it is a very
challenging data set for RBA. They could get similar IP
addresses with higher probability. Therefore, it is impor-
tant to evaluate how the RBA protection changes in such
a challenging scenario.

4.1.1. Legal and Ethical Considerations. The study
participants [34] signed a consent form agreeing to the
data collection and use for study purposes. They were
always able to view a copy of their data and delete it on
request. The collected data were stored on encrypted hard
drives and only the researchers had access to it.

We do not have a formal IRB process at our university.
Still, we made sure to minimize potential harm by com-
plying with the ethics code of the German Sociological
Association (DGS) and the standards of good scientific
practice of the German Research Foundation (DFG). We
also made sure to comply with the GDPR.

4.1.2. Limitations. Our results are limited to the data
set and the users who participated in the study. They
are limited to the population of a certain region of a
certain country. They are not representative for large-scale
online services, but show a typical use case scenario of a
daily to weekly use website. As in similar studies, we can
never fully exclude that intelligent attackers targeted the
website. However, multiple countermeasures minimized
the possibility that the website was infiltrated [34].

4.2. Attacker Models

We evaluated the privacy enhancements using three
RBA attacker models found in related literature [12], [34].
All attackers possess the login credentials of the target.

Naive attackers try to log in from a random Internet
Service Providers (ISP) from somewhere in the world. We
simulated these attackers by using IP addresses sourced
from real-world attacks on online services [11].

VPN attackers know the country of the victim. There-
fore, we simulated these attackers with IP addresses from
real-world attackers located in the victim’s country [11].

Targeted attackers know the city, browser, and device
of the victim. Therefore, they choose similar feature val-
ues, including similar ISPs. We simulated these attackers
with our data set, with the unique feature combinations
from all users except the victim. Since the IP addresses
of our data set were in close proximity to each other, our
simulated attacker was aware of these circumstances and
chose them in a similar way.

4.3. Methodology

In order to test our privacy enhancements in terms
of practical RBA solutions, we defined a set of desired
properties. Our enhancements need to: (A) Keep the
percentage of blocked attackers: The ability to block a
high number of attackers should not decrease when using
the privacy enhancements. This is necessary to keep the
security properties of the RBA system. (B) Retain differ-
entiation between legitimate users and attackers: When
applied, the risk score differences between legitimate users
and attackers should only change within a very small
range. Otherwise, the usability and security properties of
the RBA system would decrease.

We outline the tests to evaluate the privacy enhance-
ments below. Based on the method in Wiefling et al. [34],
we reproduced the login behavior for attackers and legit-
imate users by replaying the user sessions. We integrated
truncation and k-anonymity in the reproduction process,
to test the countermeasures.

The RBA model used the IP address and user agent
string as features, since this can be considered the RBA
state of practice [34], [36]. We truncated the IP addresses
in ranges from 0 to 24 bits, to observe the effects on
the RBA performance. We assume that cutting more than
25 bits will not allow to reliably detect attackers. We also
tested k-anonymity with the IP address feature until k = 6.
As US government agencies consider less than five entries
to be sensitive [10], we chose to cover this threshold.

4.3.1. Test A: Percentage of Blocked Attackers. To
compare the RBA performance regarding all three attacker
models, we calculated the percentage of how many attack-
ers would be blocked. We call this percentage the true
positive rate (TPR), as previous work did [12], [34]. For
a fair comparison, we observed how the TPR changed
when aiming to block 99.5% of attackers. We chose this
TPR baseline since it showed good performance regarding
usability and security properties in a previous study [34].

To ease comparison, we adjusted the TPR for each
truncation or k-anonymity step xi as percentage differ-
ences to the baseline without modifications (relative TPR):

TPRrelativexi
=

TPRxi
− TPRbaseline

TPRbaseline
(5)

Following that, TPRrelativexi
< 0.0 means that the TPR

decreased compared to the baseline.

4.3.2. Test B: Risk Score Changes. To determine the
degree that attackers and legitimate users can be differ-
entiated in the RBA model, we calculated the risk score
relation (RSR) [34]. It is the relation between the mean
risk scores for attackers and legitimate users:

RSRbasic =
mean attacker risk score

mean legitimate risk score
(6)
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To ease comparison, we normalized each RSR for every
truncation or k-anonymity step xi as percentage differ-
ences to the baseline (relative RSR). The baseline is the
IP address without modifications:

RSRrelativexi
=

RSRbasicxi
−RSRbaseline

RSRbaseline
(7)

As a result, RSRrelativexi
< 0.0 signals that attackers and

legitimate users can no longer be distinguished as good
as they were before introducing the privacy enhancing
measures.

4.3.3. Limit Extraction. For each test, we defined the
following thresholds to extract limits that do not degrade
RBA performance to an acceptable extent.

(Test A) We require the RBA performance to remain
constant. Thus, we selected the reasonable limit as the
point at which the relative TPR decreases compared to
the baseline, i.e., attackers cannot be blocked as good
as before any more. (Test B) Unlike tracking, RBA uses
the feature information in addition to an already verified
identifier, e.g., passwords. Thus, we consider it feasible
to reduce the RSR slightly for the sake of privacy. Based
on our observations, RSR changes below 0.01 can be
tolerable for our case study evaluation. Thus, we chose
the reasonable limit as the point at which the relative RSR
is lower than 0.01.

4.4. Results

In the following, we present the results for all attacker
models. We discuss the results after this section. We used
a high performance computing cluster using more than
2000 cores for the evaluation. This was necessary since
calculating the results with the simulated attackers was
computationally intensive.

For statistical testing, we used Kruskal-Wallis tests
for the omnibus cases and Dunn’s multiple comparison
test with Bonferroni correction for post-hoc analysis. We
considered p-values less than 0.05 to be significant.

4.4.1. Truncation. Figure 1 shows the truncation test
results for all attackers. The TPR differences between
the targeted attacker and both remaining attackers were
significant (Targeted/Naive: p=0.0151, Targeted/VPN:
p<0.0001). The TPRs exceeded the limit after 20 bits for
naive, 3 bits for VPN, and 14 bits for targeted attackers.

Regarding the relative RSRs, there are significant
differences between VPN and both remaining attackers
(p<0.0001). The RSRs exceeded the limit after 3 bits for
naive, 21 bits for VPN, and 3 bits for targeted attackers.

Combining both results, the accepted truncation limits
based on our criteria were 3 bits for all attacker models.

4.4.2. K-Anonymity. Figure 2 shows the combined k-
anonymity test results for the three attacker models. The
relative TPR decreased after k = 1 for targeted attack-
ers, k = 2 for naive attackers, and not at all for VPN
attackers until at least k = 6. There were significant TPR
differences between naive and VPN attackers (p=0.0066).

The relative RSR did not decrease for all attacker types
and there were no significant differences.
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Figure 1. Results for truncating the IP address. Top: Relative TPR (Test
A). There were significant differences between targeted and both VPN
and naive attackers. Bottom: Relative RSR (Test B). The differences
between VPN and both targeted and naive attackers were significant.
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Figure 2. Results for k-anonymity regarding the IP address. Top: Relative
TPR (Test A). Differences between naive and VPN attackers were
significant. Bottom: Relative RSR (Test B). There were no significant
differences.

Combining the results, the acceptable k levels based
on our criteria were k = 1 for targeted attackers, k = 2
for naive attackers, and at least k = 6 for VPN attackers.

5. Discussion

Our results show that IP address truncation signifi-
cantly affects the RBA risk score and reduces the proba-
bility of attack detection. The truncation for VPN attackers
resulted in a local maximum of the RSR at 12 bits, and
thus apparently improved detection. However, this was due
to the fact that the VPN attacker only had an IP address
range limited to the VPN service’s server locations. Since
the first IP address bits correspond to a node’s geolocation,
they were mostly distinct from legitimate users residing in
different areas. Thus, truncating increased the risk scores
for VPN attackers until 12 bit, as the probability for the
global login history p(FV k) decreased but the one for
the local history p(FV k|u, legit) remained constant. In
contrast to that, targeted attackers also had a limited IP
address range, but they were located in the same region as
the legitimate users. Also, naive attackers had a large IP
address range. Thus, in both cases, the differences between
p(FV k) and p(FV k|u, legit) remained constant to similar
levels until 12 bits.

Following that, and what our evaluation indicates, we
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TABLE 1. OVERHEAD CREATED BY ADDITIONAL LOGIN ENTRIES TO
ACHIEVE K-ANONYMITY

k Additional Entries Increase to Baseline

1 0 0.0
2 3928 0.41
3 7965 0.83
4 12013 1.26
5 16065 1.68
6 20120 2.11

do not recommend truncating more than three bits for a
stable RBA performance in our case study scenario.

K-anonymity increased the distinguishability between
legitimate users and attackers, i.e., the RSR. This was
due to the fact that this mechanism added new entries
to the global login history. As a result, the overall prob-
ability for unknown feature values in the global login
history p(FV k) decreased, making it harder for attackers
to achieve a low risk score. However, this also decreased
the detection of attackers, i.e., the TPR, in most cases,
since k more users had similar feature values in the data
set. As a side effect of these results, unique feature values
got less unique in total. Thus, due to the determined limit
of k = 1, k-anonymity for targeted attackers can only be
achieved with degraded RBA performance.

The overhead produced by the additional entries in-
creased with each k (see Table 1). It was even more
than the data set itself at k>3, which makes the current
mechanism impractical for very large online services. To
mitigate this issue, mechanisms could be introduced which
remove some additional login entries when k-anonymity
can be fulfilled after some time.

K-anonymity is not scalable with an increasing num-
ber of features [1], while the other approaches are. Thus,
sensible RBA privacy enhancements might be a combina-
tion of all outlined countermeasures, to ensure scalability.

Based on our results, we discuss privacy challenges
and further research directions in the following.

5.1. Privacy Challenges

When integrating privacy into RBA systems, there are
several challenges that should be considered in practice.
We describe them below.

Role of the IP Address Feature. Using a combination
of privacy enhancements for the IP address might be
sufficient for some applications. However, this feature
is still sensitive information. Thus, the question arises
whether online services should consider privacy enhancing
alternatives instead of storing the IP address. One alterna-
tive could be to derive only the region and ASN from the
IP address, and discard the rest. Other approaches even
enable identifying network anomalies, e.g., IP spoofing
using a VPN connection, without having to rely on the IP
address at all. For example, the server-originated round-
trip time (RTT) [34] can be used to estimate the distance
between the user’s device and the server location and may
replace IP addresses as RBA features. As the RTTs vary
based on the server location, they become useless for most
re-identification attacks using leaked databases, as server
locations are distributed in practice. They can even be
enriched with random noise to further enhance privacy.

Risk of Feature Stuffing. Such considerations can be
more and more important with widespread RBA adop-
tion in the future. We assume that when databases with
RBA feature values got stolen, this might have serious
consequences for other services using RBA. In contrast
to passwords, behavioral RBA feature values cannot be
changed after compromise. Attackers can attempt to auto-
matically reproduce these feature values on other websites.
Thus, more privacy preserving alternatives that are hard
to spoof for attackers might be crucial to mitigate largely
scalable “feature stuffing” attacks.

Handling Data Deletion Requests. Further conflicts
could arise with data protection regulations. Users are
legally permitted to request data deletion. So when they
request online services to delete their RBA feature data,
they might lose RBA protection on their user accounts.

5.2. Research Directions

Our case study evaluation provided first insights on
truncating feature values to increase privacy. As the results
showed that this is possible to a certain degree while main-
taining RBA performance, further work can investigate it
for other types of features, e.g., the user agent string.

The proposed k-anonymity mechanism can increase
privacy regarding unique entries in the data set. However,
users might still be identifiable when they have a combi-
nation of typical feature values, e.g., a home and a work
IP address. This non-trivial task had been addressed in
dynamic databases [27], [37]. Future work may investigate
whether such mechanisms are also applicable to RBA.

As we could not reliably test the login history mini-
mization approach with our data set, future work should
investigate this on a medium to large-scale online service
with regular use.

6. Related Work

Burkhard et al. [6] investigated truncating IP addresses
in anomaly detection systems. They found that truncating
more than four bits degraded the performance of these
systems. Chew et al. [7] further evaluated IP truncation
in intrusion detection systems. Their results showed that
the detection accuracy in many of the tested classifiers
decreased after removing more than 8 bits. Our study
showed that three bits could be removed from the IP
address to maintain RBA performance at the same time.

Both Safa et al. [26], and Blanco-Justicia and
Domingo-Ferrer [4] proposed privacy-preserving authen-
tication models for implicit authentication using mobile
devices. Their models relied on client-originated features,
and the former also calculated risk scores on the client’s
device. However, this is not applicable to our RBA use
case, as it relies on server-originated features and risk
scores to prevent client-side spoofing.

To the best of our knowledge, there were no studies in-
vestigating privacy enhancements in RBA systems. How-
ever, some literature touched on privacy aspects related
to RBA. Bonneau et al. [5] discussed privacy concerns of
using additional features for authentication. They found
that privacy preserving techniques might mitigate these
concerns, but these had not been deployed in practice. We
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proposed and tested some techniques for the first time in
our case study. Wiefling et al. [35] investigated RBA’s
usability and security perceptions. The results showed
that users tended to reject providing phone numbers to
online services for privacy reasons. They further studied
RBA characteristics on a real-world online service [34],
showing that the feature set can be very small to achieve
good RBA performance. We demonstrated that the privacy
can be further enhanced through different mechanisms.

7. Conclusion

With a widespread use of RBA to protect users against
attacks involving stolen credentials, more and more online
services will potentially store sensitive feature data of their
users, like IP addresses and browser identifiers, for long
periods of time. Whenever such information is forwarded
or leaked, it poses a potential threat to user privacy. To
mitigate such threats, the design of RBA systems must
balance security and privacy.

Our study results provide a first indication that RBA
implementations used in current practice can be designed
to become more privacy friendly. However, there are still
challenges that have not been resolved in research to
date. An important question is, e.g., how the IP address
feature can be replaced with more privacy preserving
alternatives. On the one hand, we assume that the IP
address is very relevant for re-identification attacks [9].
Discarding it from the RBA login history can therefore
increase privacy protection. On the other hand, the IP
address is a feature providing strong security [34]. Future
research must carefully identify and analyze such trade-
offs, so that RBA’s user acceptance does not drop with
the first data breach.
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