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Abstract. Risk-based authentication (RBA) aims to strengthen pass-
word-based authentication rather than replacing it. RBA does this by
monitoring and recording additional features during the login process. If
feature values at login time differ significantly from those observed before,
RBA requests an additional proof of identification. Although RBA is
recommended in the NIST digital identity guidelines, it has so far been
used almost exclusively by major online services. This is partly due to
a lack of open knowledge and implementations that would allow any
service provider to roll out RBA protection to its users.
To close this gap, we provide a first in-depth analysis of RBA charac-
teristics in a practical deployment. We observed N=780 users with 247
unique features on a real-world online service for over 1.8 years. Based
on our collected data set, we provide (i) a behavior analysis of two RBA
implementations that were apparently used by major online services in
the wild, (ii) a benchmark of the features to extract a subset that is
most suitable for RBA use, (iii) a new feature that has not been used in
RBA before, and (iv) factors which have a significant effect on RBA per-
formance. Our results show that RBA needs to be carefully tailored to
each online service, as even small configuration adjustments can greatly
impact RBA’s security and usability properties. We provide insights on
the selection of features, their weightings, and the risk classification in
order to benefit from RBA after a minimum number of login attempts.

Keywords: Risk-based Authentication (RBA) · Authentication features
· Big Data Analysis · Usable Security.

1 Introduction

Despite their long known weaknesses [29,5,48,12,19,15], passwords are still used
for authentication on most online services [35]. However, threats to password-
based authentication continue to evolve to attacks involving targeted guess-
ing [32] or stolen credentials sourced from data breaches [43].

Thus, online services need to implement alternative or additional measures to
protect their user base. Two-factor authentication (2FA) is such a measure, but
tends to be only accepted in online banking use cases [36,17,45]. Also, universal
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second factor (U2F) or biometric authentication require additional hardware and
active user enrollment, which makes them impractical for online services [13,21].

For these reasons, several major online services deployed risk-based authen-
tication (RBA) to protect their users [46]. RBA is an adaptive authentication
mechanism which increases password security with minimal impact on the user.
It achieves better usability than comparable 2FA methods [45] and is recom-
mended by NIST [22] to mitigate credential stuffing.

During the password entry, RBA monitors and records features that are
available in this context. These feature range from network information, or device
information, to behavioral information. Based on these features, RBA calculates
a risk score related to the login attempt. The score is typically classified by
an access threshold into low, medium, and high risk [20,28,24]. Based on the
estimated risk, the RBA system can invoke multiple actions. If the score is
under the threshold, i.e., a low risk, access is granted. If the score is above
this threshold, i.e., medium or high risk, the online service asks for additional
information (e.g., confirming an email address) or even blocks access.

RBA schemes, their configuration, and features have not been researched
thus far. These are, however, of crucial importance, since they can highly impact
security and usability for website users. A feature might reduce the number of re-
authentication requests but could also weaken the attack protection. To further
investigate this topic, we formulated the following research questions.

Research Questions. With these research questions, we aim to to provide
answers on how RBA performs in a practical deployment and how RBA can be
configured to provide the best balance between security and usability.

RQ1: a) How often does RBA request for re-authentication in a practical de-
ployment?

b) How many user sessions need to be captured and stored in the login
history to achieve a stable and reliable RBA setup?

RQ2: a) Which RBA features have to be chosen to achieve good security?
b) How do RBA features need to be combined to achieve good security?
c) How often will different RBA feature combinations request legitimate

users for re-authentication?
RQ3: a) How practical are different RBA configurations regarding performance?

b) How scalable and cost-efficient are different RBA configurations?

Contributions. We provide the first long-term data-driven analysis of RBA
characteristics. (i) We monitored and recorded the login behavior and features
of 780 users on a real-world online service for over 1.8 years. (ii) We derived
two RBA models based on the majority of deployments used in current practice.
(iii) We evaluated the two models on our data set and identified features that, in
combination, provide good security and usability. (iv) We proposed and tested a
new feature that had not yet been seen in the RBA and browser fingerprinting
context before. (v) We derived how specific factors influence RBA’s performance.
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The results show that even small changes to RBA settings, e.g., the feature
set or access threshold, can strongly affect the usability and security properties of
RBA. Our work supports service owners regarding RBA design decisions on their
website. It helps administrators select suitable RBA properties—including the
RBA scheme, feature set, and weightings—for their website’s characteristics and
needs. Finally, researchers obtain insights on RBA’s inner workings in practice.
Understanding these factors can provide a comprehensive understanding of RBA
and foster a widespread adoption that goes beyond the current use by only major
online services.

2 RBA Models

We derived and evaluated two RBA models based on observations on the RBA
behavior of major online services [46] and algorithm descriptions in literature.

The simple model (SIMPLE) extends the single-feature model used in the
open source single sign-on solution OpenAM [31] and is assumed to be used at
GOG.com [46]. It also partly reflects models given in literature [42,24,16]. We
based our implementation on OpenAM, since it is freely available and probably
widely used. The SIMPLE algorithm checks a number of features for an exact
match in the user’s login history. The risk score is the number of inspected
features with at least one match in the login history divided by the total number
of considered features. Thus, the risk score granularity increases with the number
of observed features. We tested this model in two variations to observe the
potential of OpenAM’s original implementation. For a fair comparison with an
influential RBA algorithm in literature [20], the first variation used the features
IP address with IP-based geolocation, and user agent string (SIMPLE-IPUA). In
the second variation, we enabled the maximum number of features in the Open-
AM solution to test its maximum potential (SIMPLE-ALL). Besides the three
features, there were registered client (HTML5 canvas and WebGL fingerprint),
and last login (i.e., logged in within the last 31 days).

The extended model (EXTEND) is comparable to the multi-features model
that Google, Amazon, and LinkedIn used [46] and presumably still use in some
form. We based this model on Freeman et al. [20], since it was the only compa-
rable algorithm described in the literature. The model calculates the risk score
S for a user u and a given feature set (x1, ..., xd) with d features as [20]:

Su(x) =

(︄
d∏︂

k=1

p(xk)

p(xk|u, legitimate)

)︄
p(u|attack)

p(u|legitimate)
(1)

p(xk) is the probability of a feature value in the global login history and
p(xk|u, legitimate) is the probability that a legitimate user has this feature value
in its own login history. Since we did not collect attack data, we assumed that all
users are equally likely to be attacked. Thus, we set p(u|attack) = 1

|U | , where U

is the set of users with u ∈ U . The probability of legitimate logins for the user is
based on the proportion of logins, i.e., p(u|legitimate) = Number of user logins

Number of all logins .
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Since the risk score depends on the global login history size, the risk score gran-
ularity increases with the number of entries in the global login history.

We smoothed the features with linear interpolation to add probabilities for
previously unseen but plausible values [20]. We also subdivided some features
into subfeatures with individual weightings (IP address → autonomous system
number (ASN) and country; user agent string → browser/OS name and version,
and device type, i.e., mobile or desktop). Freeman et al. evaluated these features
and subfeatures with the help of LinkedIn [20]. Thus, these potentially represent
a practical RBA feature set, which is why we chose and tested them as a baseline.

3 Data Set

We evaluated the RBA models with a data set containing real-world user be-
havior to identify the model characteristics in a practical deployment.

Data Collection. We recorded user data from August 2018 to June 2020 on
an e-learning website for medical students. During course enrollment, they were
registered at the website by the faculty staff. The students used this online
service to exercise for their study courses and exams. After each successful login,
we collected 247 different features of the user’s online browser, network, and
device (see the pre-proceedings paper version [44] for the full list of features).
The features were relevant in the field of device fingerprinting [34,3] and could
help to identify users in RBA as well.

The data set is very challenging for RBA since the users are mostly located
in the same city. Thus, they could get similar feature values, e.g., IP addresses,
with higher probability. Testing this data will answer whether practical RBA
deployments can protect users in such a challenging scenario.

Survey. The e-learning website collected usernames, hashed passwords, and
features only. After the collection phase, we surveyed users between July and
August 2020 to improve data quality (see Appendix A for the questionnaire).

We recruited via a mailing list of the University of Cologne, addressing stu-
dents who potentially used the e-learning website between August 2018 and June
2020. We introduced the study as a survey on the overall website perception. We
drew 12 Amazon vouchers worth €10 among all participants after the study.

After verifying their account, the users were redirected to the survey. Besides
demographics, we included some questions about the website experience to dis-
tract from our actual study purpose. To improve data quality, we asked whether
the users knew about someone illegitimately logging into their website account.
We based this question on Shay et al. [39].

Demographics. In total, 182 website users (26.6% of login sessions) answered
the survey. 168 users passed the attention check. The users were 61.3% female
and 38.1% male (0.6% did not state the gender). The majority of users (79.7%)
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Fig. 1. Login history sizes and number of users in our data set

were between 18 and 24 years old. The remaining users were 25-34 years (18.5%),
and 35-54 years old (1.8%). The age and gender distribution corresponds to the
expected demographics for such a study course.

Login Sessions. The data set consisted of 780 users and 9555 logins. The users
mostly logged in daily (44.3%) or several times a week (39.2%). They logged in
between one and 83 times (mean: 12.25, median: 9, SD: 11.18; see Figure 1).
They used desktop (81.1%) and mobile devices (18.9%). The desktop devices
were Windows (62.5%), macOS (37.2%), and Linux (0.3%) based. Mobile devices
were iOS (75.2%) and Android (24.8%) based. The browsers were mainly Safari
(40.4%), Chrome (29.0%), Firefox (26.1%), and Edge (3.3%). To improve the
quality and validity of our results, we removed users who stated an illegitimate
login attempt in the survey. However, there were no such users (93.5% did not
notice, 6.5% did not know).

Feature Optimization. To improve the expected performance of some of the
features, we optimized them based on procedures found in literature [24,20,42,3]
and as described in the following.

We extracted additional subfeatures from the IP address, user agent string,
and timestamp features. Besides only extracting the hour [24], we also extracted
combinations of weekday and hour to gain more information.

Administrators aiming to deploy the EXTEND model need to adjust the
feature weightings to appropriate values. Freeman et al. [20] did not provide
subfeature weightings for IP address and user agent string. Thus, we calculated
weightings for our data set following the method described in their paper. As
a result, we set the weightings for the IP address (IP address: 0.6, ASN: 0.3,
country: 0.1) and user agent (full string: 0.53, browser: 0.27, OS: 0.19, device
type: 0.01). We chose the weightings based on the value of information when
present. They only relate to our specific data set, but can give an impression of
their distribution in practice.

New Feature: Round-Trip Time. We propose a new feature that has not
been seen in RBA and browser fingerprinting literature at the time of study. In
concurrent and independent work, Rivera et al. [37] proposed a similar idea based
on the work-in-progress resource timing API. Apart from it being a different
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approach, their feature is also client originated and thus less trustworthy than
our solution.

The web sockets technology [27], which is present in most online browsers
today [9], allows measuring the round-trip-time (RTT). The server requests a
data packet from the client and measures the time until the response. Popular
online browsers Chrome and Firefox did not display this process (ping and pong
frames) inside their developer tools at the time of study. RTTs can give infor-
mation on whether the user’s device is really located in the indicated region,
or whether the location was potentially spoofed, e.g., by VPNs or proxies [1,8].
This is also true in the presence of Content Delivery Networks (CDNs), where
the CDN edge node can be linked to the RTT. This results in an even better
measurement, since the edge nodes close to the user’s device are also considered.

When users entered the login credentials, we measured the RTT five times.
Then, we stored the smallest RTT value to get the best possible value and to
mitigate larger RTT variations, e.g., due to mobile connectivity. Besides the RTT
in microseconds (RTT-RAW), we stored RTTs in milliseconds (RTT-MS), and
rounded to the nearest five (RTT-5MS) and ten milliseconds (RTT-10MS).

Legal and Ethical Considerations. The participants were part of a model
medical education program. During enrollment, they signed a consent form
agreeing to the data collection for study purposes. They were always able to
view their data on request. The collected data was stored on encrypted hard
drives. Only the study researchers had access to them. The passwords on the
website were hashed with scrypt [33]. All participants gave informed consent on
these procedures. All survey questions included a “don’t know” option.

We do not have a formal IRB process at our university. But besides our ethical
considerations above, we made sure to minimize potential harm by complying
with the ethics code of the German Sociological Association (DGS) and the
standards of good scientific practice of the German Research Foundation (DFG).
We also made sure to comply with the EU General Data Protection Regulation.

4 Attacker Models

We evaluated the RBA systems using three attacker models based on known ones
in the RBA context [20,47]. All attackers possess the victim’s login credentials.

Naive Attacker VPN Attacker Targeted Attacker
Login Credentials Country City, Browser, Device

Fig. 2. Overview of the attacker models tested in the study

The naive attacker tries to log in via an IP address of a random ISP located
somewhere in the world and uses popular user agent strings. We simulate these
attackers using a random subset of IP addresses sourced from real-world online
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attacks [18]. Other feature values not related to the IP address are sourced from
our data set. The VPN attacker knows the same as the naive attacker plus
the correct country of the victim. The attacker spoofs the IP geolocation with
VPN services and uses popular user agent strings. We simulate these attackers
with known attacker IP addresses [18] located in the victim’s country. Feature
values not derived from the IP address are sourced from our data set. We also
included IP addresses not directly related to VPN services to consider services
that tunnel traffic through client devices. The targeted attacker extends the
knowledge of the VPN attacker by including locations and user agents of the
victim. The attacker accesses IP addresses of ISPs in that location, likely in-
cluding the victim’s ones. This attacker is identical to Freeman et al.’s phishing
attacker [20]. We used a different term, however, as phishing is just one of the
ways to obtain this level of knowledge. We simulate this attacker with our data
set. The feature values are taken from all users except the victim. Since location
dependent feature values in our data set were in close proximity to each other,
our simulated attacker is aware of these circumstances and chooses feature values
in a similar way.

5 Evaluating RBA Practice (RQ1)

Below, we analyze the RBA behavior in a practical deployment. We describe our
methodology to reproduce the RBA behavior and present the results.

Step 1: Calibrating Risk Scores. The risk scores of the RBA models have
different granularity (see Section 2). For a fair comparison, we calibrated the
risk score access thresholds of both RBA models. We adjusted regarding the
percentage of blocked attacks in each attacker model, which we call the true
positive rate (TPR), as in related work [20]. We approximated the TPRs as
close as possible. However, due to their granularity properties, SIMPLE TPRs
were more coarse-grained than those of EXTEND.

Step 2: Determine Re-Authentication Count. By replaying user sessions,
we determined how often the data set’s legitimate users were asked for re-
authentication based on the number of logins. For each login attempt, we (i) re-
stored the state at the time of the login attempt, (ii) calculated the risk score
with the RBA model, and (iii) finally applied the calibrated RBA access thresh-
old to the risk score and stored the access decision.

To provide an average estimation of the RBA behavior, we calculated the
median re-authentication counts and rates for each login history size.

5.1 Results

Figure 3 shows the results for the targeted attacker case. We answer our research
questions regarding practical RBA deployments in the following.
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Fig. 3. Median re-authentication counts (top) and rates (bottom) per user based on
the login history size. The TPR (percentage of blocked attacks) relates to targeted
attackers. We added the baseline for 2FA (light grey line), the stable setup threshold
(dark grey line), and the mean login count (dotted black line) for orientation. Below the
stable setup threshold, users had to re-authenticate less than every 2nd login attempt.

Table 1. Median login count until re-authentication when blocking targeted attackers

Median logins until Median logins until Median logins until
Model TPR re-authentication Model TPR re-authentication Model TPR re-authentication

EXTEND 0.9992 2.4 SIMPLE-ALL 0.9991 1.71 SIMPLE-IPUA 0.9829 1.71
0.9947 6 0.9857 6 0.7474 12
0.9900 12 <0.9857 ∞ <0.7474 ∞
0.9799 12

<0.9799 ∞

Login history size: 12

Number of re-authentication requests in practice (RQ1a). The users
logged into the website 12.25 times on mean. Thus, we considered a login history
size of 12 to determine the re-authentication count for the average user in our
data set. We define the median login count until re-authentication as the login
history size divided by the median re-authentication count. In the following, we
show the results with TPRs adjusted for each attacker model. Note that due to
the risk score characteristics, attackers of lower hierarchy were always blocked
as well (e.g., all naive attackers were blocked when blocking all VPN attackers).

Even when blocking all naive attackers with the highest possible TPR, le-
gitimate users were never asked for re-authentication at all, except for SIMPLE-
IP with TPR 0.999 (every 12th time). When VPN attackers were blocked,
legitimate users were mostly not asked for re-authentication at all. In the other
cases, they were prompted every 2.4th time (TPR 0.9995) and every 12th time
(TPR 0.9946, 0.9903) with EXTEND, every 12th time with SIMPLE-IP (TPR
0.9933), and every 6th time with SIMPLE-ALL (TPR 0.9999). When blocking
targeted attackers, our legitimate users were never asked for re-authentication
with TPRs lower than 0.98 in most cases (see Table 1 and Figure 3).
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Overall, the median re-authentication rate became lower with an increase
in the login history size. For very high TPRs, however, the numbers did not
decrease to a high degree, especially with the SIMPLE model.

Concluding the results, RBA rarely requests re-authentication for most cases
in our real-world data set, even when blocking targeted attackers up to a TPR
of over 0.9945 with EXTEND. However, the re-authentication rate strongly de-
pends on the RBA model and the assumed attacker model. The influence of the
feature set and the feature weightings will be analyzed in Section 6.

Required login history size (RQ1b). Since RBA is designed to request
less re-authentication than 2FA for legitimate users, this difference needs to
be noticeable in sensible RBA deployments. As a baseline to request less than
every second login attempt, we defined the required login history size as the size
above which the median re-authentication rate remains below 0.5. For statistical
validity, we considered login history sizes lower than 38 since these had at least
30 users (see Section 3).

In our data set, most TPRs required one or even no history entry for blocking
targeted attackers in both models (see Figure 3). However, EXTEND required
ten entries for TPR 0.9992. The SIMPLE models partly did not fulfill the re-
quirement (TPRs: 0.9829 SIMPLE-IPUA, 0.9991 SIMPLE-ALL). Based on our
results, we conclude that storing one entry is already sufficient for a stable setup
that blocks more than 99.45% of targeted attackers with the EXTEND model.
To block 99.92% of attack attempts, ten entries are needed in our use case.

5.2 Discussion

Small variations of the access thresholds (see Section 1) can greatly affect the
TPR. For instance, changing a tiny fraction of the threshold lowered the TPR
from a very good 0.9829 to 0.7474 in SIMPLE-IPUA. We assume that this can
make it difficult for administrators to adjust the access thresholds correctly. To
foster a widespread RBA adoption in the wild, we suggest that RBA properties
must be easy for administrators to estimate, apply, and control. A possible so-
lution could be a dashboard showing the aggregated re-authentication rates and
risk scores per user. These metrics can help to control and adjust the thresholds
continuously and whenever necessary.

Even in settings involving a high TPR, the RBA models hardly ask for re-
authentication at all. While this is a very good sign for the security properties
of RBA, this influences users. Users will only feel protected by RBA if they get
prompted for re-authentication at least once [45]. To support users in feeling
protected, we suggest to inform about RBA being active.

6 Analyzing RBA Features (RQ2)

Based on our 247 collected features, we determined a subset that is suitable for
RBA use. To be qualified for RBA use, we defined necessary criteria. The features
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need to: (A) Have both a good level of stability and at least minimum
entropy: In contrast to fingerprinting properties for tracking purposes [34], we
require a certain level of entropy to make it harder for attackers to reproduce the
feature values by simply brute forcing them. This might cause RBA to ask for
re-authentication at a higher frequency. However, showing RBA presence by very
few re-authentication requests can lead to increased (perceived) security [45].
(B) Be spoofable only with a high amount of effort: Easy-to-guess features
will not bring any attack detection advantage to the RBA feature set baseline.
(C) Increase differentiation between legitimate users and attackers:
When added to the baseline feature set, risk scores differences between legitimate
users and attackers should increase.

6.1 Study Setup

Based on the defined criteria, we developed and conducted several big data
computing jobs to analyze the performance of all features in our data set.

Test A: Entropy. To identify easy-to-spoof features, we calculated the Shannon
entropy of the feature values xij of each feature xi ∈ X in the login history with
n = |xi|:

Hxi
= −

n∑︂
j=0

xij · log2(xij ) (2)

We calculated two variants of entropy. To observe overall differences, we cal-
culated the entropy Hglobalxi

for the global login history. To observe the feature
stability inside the login history of each user, we calculated the mean Shannon
entropy Huserxi

of each feature in the user’s login history. As a result, features
with Hglobalxi

= 0 did not contain any information to distinguish between users.

Similarly, features with Huserxi
= 0 did not change inside the users’ login histo-

ries.

Test B: Number of Feature Values. Some of the collected features can be
spoofed by attackers with low effort. This is especially true for client submitted
features, e.g., output of a JavaScript function executed in the user’s browser.

To make features harder to guess for attackers, they need to have a large
range of values with equal distribution. Assuming that accounts will be locked
after RBA detected an illegitimate login, it will be difficult for attackers to guess
correct feature values with increasing numbers of unique feature values.

Test C: Risk Score Changes. We studied the risk score behavior of the
features to evaluate their potential to improve the detection of attackers and le-
gitimate users. We tested the features with the EXTEND model since it provides
fine grained risk scores.
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For each feature, we calculated the risk scores of all illegitimate login attempts
by targeted attackers per user (attacker risk scores). We then calculated the
risk scores of all legitimate login attempts (legitimate risk scores). After that,
we determined the risk score relation (RSR) as the relation between the mean
attacker and mean legitimate risk scores:

RSRbasic =
mean attacker risk score

mean legitimate risk score
(3)

To ease comparison, we normalized the RSRs for each feature xi ∈ X to the
baseline:

RSRxi
= RSRbasicxi

−RSRbasicbaseline
(4)

The feature baseline varied depending on the feature being compared to, e.g., the
IP address when all compared features were added to the IP address. When test-
ing only one feature, the baseline was a feature without any entropy, to observe
risk score differences when entropy was added. If the RSR of a feature xi ∈ X
is greater than the baseline RSR, i.e., RSRxi

> 0.0, this feature increased the
differentiation between legitimate users and attackers compared to the baseline.

Subset Extraction. For each test, we defined the following thresholds to ex-
tract a subset of suitable features for RBA use: (Test A) To extract features hav-
ing at least minimum entropy, we only considered features with Hglobalxi

> 0.1

and Huserxi
> 0.1. Based on the third quantile and the specific characteristics

of the data set, we chose this threshold as a minimum baseline. (Test B) To
focus on harder-to-guess features for RBA, we considered those with more than
ten unique feature values. More features were considered for both desktop and
mobile users in the global login history to adequately address security. We made
sure to check both mobile and desktop devices since mobile devices tend to
have less unique RBA feature values than desktop devices [40]. (Test C) To ig-
nore features causing only small RSR improvements, we considered features with
RSRxi

> 0.1.

Feature Reliability. The extracted features were present on all user sessions
but were very diverse, ranging from client originated to server side recorded.
Thus, we labeled them by the following properties: (i) Server side: These fea-
tures are measured on the server side. Since they do not depend on client orig-
inated input, they add a high level of trust. (ii) Client side JavaScript not
required: There might be users that deactivated JavaScript, e.g., for privacy
reasons. To ensure compatibility, we labeled features that can be measured with-
out JavaScript.

Based on the properties, we distinguished three categories of RBA features:
Single features add a high level of reliability and provide good RBA perfor-
mance on their own. Major add-on features are similar, but they only achieve
good RBA performance when added to a single feature. Both feature types can
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Table 2. Single and major add-on features that qualified for RBA use. The only single
feature is the IP address (bold). The other ones are major features that can be used in
addition to a single feature. All features are server originated and hence hard to spoof.

JavaScript Median logins until

Feature not required RSR Hglobal Huser Unique values re-authentication

IP address  1.20 10.51 1.96      **2.00

RTT-10MS # 1.75 2.45 1.04   ### 1.50
RTT-5MS # 1.37 3.27 1.33   ### 1.71
ASN (IP)  0.91 3.17 0.76   ### 3.00
RTT-MS # 0.56 5.43 2.00     # 2.00
Hour  0.23 4.06 2.31  #### 4.00
Region (IP)  0.15 1.20 0.31  #### 1.71
Weekday and hour  0.15 6.72 2.78    ## 4.00

Significantly higher than the baseline: ** p < 0.01
Baselines: Zero entropy feature (single feature), IP address (major add-on feature)
Unique values: Five dot scale (very low, low, medium, high, very high) mapped to the
values (10-24, 25-74, 75-149, 150-300, >300).

be used with high weighting and are measured on the server side. Add-on fea-
tures are not as reliable as the features above but can be used in addition to
single features. They are client originated. Therefore, it is possible that some of
them could be blocked or modified, e.g., by anti-tracking measures [7].

Re-authentication Count Changes. We assume that less requests for re-
authentication can increase RBA usability and user acceptance [45]. Thus, we
measured whether certain features have the potential to decrease the requests for
legitimate users. We calculated the median login count until re-authentication
for average legitimate users (i.e., 12 logins) and a TPR of 0.8 (targeted attackers)
for each feature. We selected the TPR to allow all features to get a TPR close to
the desired TPR for fair comparison. Also, selecting targeted attackers allowed
us to test the features against the best possible attacker.

High re-authentication counts can signal administrators to weigh this fea-
ture lower, in combination with other features having lower counts, to balance
usability.

6.2 Results

In the following, we present our results ordered by the three RBA feature cate-
gories. For statistical testing, we used Kruskal-Wallis tests for the omnibus cases
and Dunn’s multiple comparison test with Bonferroni correction for post-hoc
analysis. We considered p-values lower than 0.05 as significant.

We calculated the risk scores on a high-performance computing (HPC) cluster
with more than 2400 CPU cores. This was necessary since such calculations were
computationally intensive. Using the HPC cluster reduced the calculation time
to approximately two days for all features (instead of 123.5 days using 32 cores).

After combining the features that passed all three tests, only the IP address
qualified as a single feature for RBA use. When being used in addition to the IP
address, seven features qualified asmajor add-on features, all of them network
or behavior based (see Table 2). Since the IP address was the only appropriate
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Table 3. Add-on features that qualified for RBA use in addition to single features. In
comparison to major add-on features, they are client originated and thus spoofable.

JavaScript Median logins until

Feature not required RSR Hglobal Huser Unique values re-authentication

Session Cookie  22.39 9.51 0.51      **12.00
User agent string (w/ subfeatures)  10.33 7.43 1.21      **12.00
Screen width and height # 3.28 4.70 0.64     # 3.00
WebGL fingerprint # 3.14 4.12 0.55    ## 4.00
Accept language header  3.01 2.57 0.33    ## 3.00
App version # 2.74 6.29 1.01      2.40
Available width and height # 2.72 6.36 0.95      3.00
OS full version  2.64 3.90 0.59    ## 2.40
WebGL Version # 2.59 2.14 0.36   ### 2.40
WebGL extensions # 2.52 3.62 0.56   ### 6.00
HTML5 canvas fingerprint # 2.28 6.45 0.77      3.00
OS name and version  2.27 3.91 0.59    ## 2.40
Browser major version  2.03 4.28 0.80   ### **6.00
Device pixel ratio # 1.94 2.66 0.51   ### 2.40
User agent string (no subfeatures)  1.74 7.43 1.21      3.00
Main language # 1.61 1.35 0.24  #### 3.00
Browser full version  1.27 5.49 0.96    ## **12.00
Browser name and version  1.14 5.85 1.02     # **6.00
Local IP address # 1.13 3.27 0.49      1.00
Webkit temporary storage # 0.92 3.30 0.39      1.00
Battery discharging time # 0.75 1.95 0.48      1.00

Significantly higher than the baseline: ** p < 0.01
Unique values: Five dot scale (very low, low, medium, high, very high) mapped to the values (10-24, 25-74,
75-149, 150-300, >300).
The session cookie was set by the server. RBA simply compared the stored value.
We omitted similar features for space reasons (see Table 4 in Appendix B for all results).

single feature for this case, we extracted the add-on features using this feature.
27 features qualified by passing all three tests (see Table 3).

Conclusion. In summary, a set of features has to be chosen in most cases rather
than a single feature to achieve good RBA security. Using only one feature for
RBA risk estimation will make it hard to reliably distinguish between attackers
and legitimate users. The feature set needs to at least include features that we
identified as single or major add-ons (see Table 2) for good RBA security.

6.3 Discussion

The results confirm our previous findings [46] that IP address, user agent, display
resolution, language, and login time are useful RBA features and hence, find
adoption in the wild. The results also show that most of the 247 analyzed features
are not suitable for RBA use. Many of them had few unique values or low RSRs.
This is good for privacy, as few features need to be collected. Also, many of
the popular features [46] are collected on the server side anyway, e.g., in the
logs [25]. Still, some of them may contain sensitive data [6] and must be protected
against data breaches. But, as we considered all features as categorical data,
these can be hashed, or even truncated to some degree, to produce the same
results. Our results suggest a set of relevant RBA features may provide security
benefits while preserving usability. This set is rather small compared to the 247
evaluated features. Thus, we discuss how to design a minimal RBA feature set
to also balance privacy. We discuss a selection of relevant features and feature
combinations based on our results and findings in literature below.
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Features. The IP address proved to be the only RBA feature that can be used
as a single feature. The region and ASN are also hard to fake and to obtain
since they require network access from a specific ASN in a specific location.

The RTT turned out as a promising new RBA feature when being rounded
to milliseconds at least. Attackers need access to a device physically located
inside the victim’s location to forge this feature. Thus, using the RTT would
add high costs for attackers. However, due to more re-authentication requests,
the RTT needs to be weighted lower than other features to balance usability.

Timing features like weekday and hour increased security attributes while
having few re-authentication requests. Successful attacks need to estimate the
victim’s usual login times right to the day and hour, which can be greater effort.
This is especially the case for services that are not used on a daily basis.

The user agent string performed very well when used in combinations with
a subfeature hierarchy, confirming findings of Freeman et al. [20].

Since it can be used as a unique session identifier, the cookie seems to be an
obvious feature choice, and our results would support this view. However, cookies
should only be used very carefully or not at all as a RBA feature. They would
have to be stored permanently in the login history. Since there is no revocation
mechanism in the current RBA models, every cookie inside the login history
would always be valid. Thus, a stolen and even outdated cookie might have a
negative impact on the risk score, leading to false positives.

Feature combinations. The IP address and user agent string features
are often named in literature [20,24,40]. According to our observations related to
the data set, they increased the RSR and significantly reduced re-authentications
compared to the single features.

RBA models in literature often use user agent strings to identify a browser
[24,40,20,46,16]. However, HTML5 canvas and WebGL fingerprints [30,14]
are newer approaches considered more difficult to fake. Both approaches received
lower RSRs and significantly higher re-authentication counts compared to the
user agent string in our data set. Following that, if canvas or WebGL finger-
printing should be used to strengthen security, one should consider using them
with lower weightings.

7 Analyzing RBA Configuations (RQ3)

For good usability, the latency between submitting the login credentials and
getting the risk decision needs to be low. An acceptable delay ranges below
300 ms when considering the page load time [41]. Thus, we analyzed which
properties have an impact on the risk score calculation time. This can help to
design RBA systems with both good security and a low authentication time.

We replayed all legitimate logins with both models and measured the time it
took to calculate the risk score. We measured on a server with Intel Xeon Gold
6130 processor (2.1 GHz, 64 cores), 480 GB SSD storage, and 64 GB RAM. We
used Kruskal-Wallis tests to check for significant differences between features. For
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Fig. 4. Relationship between risk score calculation time and the size of the global login
history (left) or number of features (right) for EXTEND. The diagonal line represents
the fitted linear regression model. Left: We limited the y-axis to 30 ms for readability.

variables suggesting a relation, we calculated the linear least squares regression
between them. We determined the effect sizes based on Cohen [11].

(Test 1) We first measured the calculation times for every feature. The
median calculation times ranged 4.5-8 ms for EXTEND (median: 5.63; SD: 0.9),
and 0.07-2.7 ms for SIMPLE (median: 0.08; SD: 0.17). There were no significant
differences between the features. However, there was a large significant effect
between the calculation time and the global login history size for EXTEND.
The linear regression yielded y = 4.1912 + 0.0003 · x, with y being the time in
ms and x the global login history size (R2=0.42; f=0.85; p≪0.0001).

(Test 2) We then measured the calculation time based on the number of
features in the feature set. However, testing all 2247 − 1 combinations was not
feasible. Since there were no significant differences between all features in Test 1,
we chose the feature that ranged in the middle of all median calculation times.
We did this to select a feature that matches all features as well as possible. We
took this feature, added it to the feature set, measured the times, and did it
again until we reached the maximum number of features found in RQ2.

The results showed significant effects between the number of features and
the calculation time (see Figure 4). The fitted linear regression model resulted
in y = 1.5568+5.0038 ·x and a large effect size for EXTEND (R2=0.93; f=3.71;
p≪0.0001), with y being the time in ms and x the number of features. Linear
regression for SIMPLE resulted in y = −0.0119+0.0013 ·x and a medium effect
(R2=0.12; f=0.37; p≪0.0001). However, the latter effects were hardly noticeable.

Discussion. Administrators need to keep track of the included global login
history and features to ensure an acceptable authentication speed. The results
show that including a high amount of features impacts the performance for
EXTEND. However, our results for RQ1 already showed that capturing few
features was sufficient for good security and usability.

8 Limitations

We implemented the RBA models using Python. High-level programming lan-
guages like C++ might have reduced the calculation time. Nevertheless, our
results can still give estimates on factors that influence RBA performance.

The results are limited to the data set tested and the users who participated.
Our results are not representative of large-scale online services, but represent
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a typical use case scenario of a daily to weekly use online service in a certain
country. We assume that the IP country feature would have qualified with an in-
ternational user base [20]. To allow a fair comparison of all features, we weighted
all features equally. We expect, however, that service owners weigh features in-
dividually, possibly improving the RBA performance. Thus, we assume that our
study results represent a RBA performance baseline.

As in similar studies, we can never fully exclude that the website was targeted
by intelligent attackers. However, we implemented multiple countermeasures.
The website URL was only provided to students signing an informed consent.
The URL was not accessible via search engines due to geoblocking and other
measures to disallow crawling the site. IP scans reaching the website’s IP address
only received a white page instead of the e-learning website. The TLS certificate
also did not reveal the real DNS entry in this case. The fact that users did not
notice illegitimate login attempts and no data breaches were knownunderlines
that the website was likely not infiltrated.

9 Related Work

In previous work, we studied RBA’s usability characteristics [45,47]. The results
helped to estimate the usability of RBA characteristics in this study. To the
best of our knowledge, no studies analyzing RBA characteristics with long-term
login data exist in literature. Freeman et al. [20] tested their RBA model on a
LinkedIn data set using only IP address and user agent string as features. In
contrast to them, we tested their model with a huge set of features.

There is also related work regarding browser fingerprinting features for user
authentication purposes. Alaca and van Oorschot [3] classified 29 fingerprinting
features which have the potential to be used for user authentication. They se-
lected the features based on literature research but, in contrast to our study, did
not test them on real data. Spooren et al. [40] tested OpenAM’s RBA mechanism
on simulated data with six features, which were screen resolution, browser plug-
ins, fonts, timezone, user agent, and geolocation. They found that mobile devices
were less reliable in terms of being uniquely identified. We were able to confirm
their findings for these six features. However, our study shows that there are
other features that can reliably identify mobile device users. Campobasso and
Allodi [8] studied a criminal infrastructure that tries to bypass RBA on malware
infected victim devices. Since its geolocation spoofing relied on SOCKS5 proxies,
our new RTT feature can detect these attacks. Andriamilanto et al. [4] tested
fingerprints of website users regarding their capability to be used for authenti-
cation purposes. In contrast to our study, their data set did not relate to login
attempts, contained only client originated features, and was not tested on RBA.

10 Conclusion

As long as password-based authentication predominates, constantly evolving
data breaches and targeted attacks with breached passwords [2] increase the
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need of RBA for online services to protect their users. NIST recommends RBA
use since 2017 [22]. However, the current body of knowledge does not provide in-
sights on RBA characteristics. Understanding these is important to ensure that
practical RBA deployments protect users as much as possible while balancing
usability. To close this gap, we studied RBA characteristics with long-term usage
data of a real-world online service. Our results show that RBA can achieve low
re-authentication rates for legitimate users when blocking more than 99.45% of
targeted attacks with the EXTEND model. Moreover, our findings also show
that only few of the 247 collected features can be considered useful for practical
RBA deployments. The IP address is confirmed to be a must-have feature in gen-
eral, but it should be enriched by add-on features. Among them, the introduced
RTT showed to be a new promising feature. Cookies, however, should only be
used with great care or not at all, as stolen credentials together with a stolen
cookie might outweigh other features and falsely grant access.

Our contribution indicates that simply acquiring one of the commercially or
freely available RBA solutions is not sufficient. They still need to be customized
for the targeted online service in order to be optimized in terms of security and
usability. We provided insights on how to select proper features, their weightings,
and the access threshold. Based on our findings, we recommend to use RBA
algorithms comparable to the introduced EXTEND model, since its security and
usability properties outweighed the SIMPLE model. Overall, RBA protection
should be put in place shortly after the first deployment, as the login history
size did not affect it in our study.
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A Survey

We balanced all survey questions where applicable to mitigate social desirability bias [38].
The questions were presented in random order to randomly distribute ordering ef-
fects [26]. We varied the scale direction of the questions for a random half of sur-
vey participants. For questions without an ordinal scale, we randomized the response
options for each participant. We did all this to randomly distribute response order
bias [10,23]. We also included an attention check similar to previous work [47].

A.1 Online Service

Question (ii) and (iii) were on a five-point Likert scale including a “don’t know” option.
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(i) Which of these online services did you use at least once in the last three years?
[Multiple choice] # [website] # Google # Facebook # Twitch # [made-up online
service that did not exist] # Other:
The order of the subquestions varied randomly in this question.

(ii) How much or little did [website] support you in learning the lecture material?
(5 - Did fully support, 1 - Did not support at all)

(iii) Please rate your agreement: I think I would recommend [website] to other students.
(5 - Strongly agree, 1 - Strongly disagree)

(iv) As far as you know, has anyone ever illegitimately logged into your personal [web-
site] account?# Yes, more than once # Yes, only once # No # I don’t know

A.2 Demographics

(i) How old are you? # 18-24 # 25-34 # 35-44 # 45-54 # 55-64 # 65-74 # 75 or older
# Prefer not to say

(ii) What is your gender? # Female # Male # Non-Binary # Prefer not to say

B Features

Table 4. List of single (bold) and (major) add-on features that qualified for RBA use.
All features are present in all sessions of the data set.

Server JS not Unique Median logins

Feature side required RSR Hglobal Huser values until re-auth. p

IP address   1.20 10.51 1.96 4073 **2.00 <0.0001

Session Cookie #  22.39 9.51 0.51 1534 **12.00 <0.0001
User agent string (w/ subfeatures) #  10.33 7.43 1.21 638 **12.00 <0.0001
Screen width and height # # 3.28 4.70 0.64 176 3.00 -
WebGL fingerprint # # 3.14 4.12 0.55 90 4.00 0.8057
Screen height # # 3.09 4.34 0.64 126 4.00 0.3426
Accept language header #  3.01 2.57 0.33 91 3.00 -
Available screen width # # 2.93 4.38 0.69 150 3.00 -
Screen width # # 2.93 4.28 0.63 138 4.00 0.8883
App version # # 2.74 6.29 1.01 534 2.40 -
Available width and height # # 2.72 6.36 0.95 411 3.00 -
OS full version #  2.64 3.90 0.59 93 2.40 -
Available screen height # # 2.59 5.91 0.95 289 3.00 -
WebGL Version # # 2.59 2.14 0.36 56 2.40 -
Supported languages # # 2.53 2.54 0.36 87 3.00 -
WebGL extensions # # 2.52 3.62 0.56 69 6.00 0.1601
HTML5 canvas fingerprint # # 2.28 6.45 0.77 386 3.00 -
OS name and version #  2.27 3.91 0.59 95 2.40 -
Browser major version #  2.03 4.28 0.80 57 **6.00 0.0046
Device pixel ratio # # 1.94 2.66 0.51 70 2.40 -
RTT-10MS  # 1.75 2.45 1.04 51 1.50 -
User agent string (no subfeatures) #  1.74 7.43 1.21 635 3.00 -
Main language # # 1.61 1.35 0.24 21 3.00 -
RTT-5MS  # 1.37 3.27 1.33 67 1.71 -
Browser full version #  1.27 5.49 0.96 118 **12.00 0.0005
Browser name and version #  1.14 5.85 1.02 161 **6.00 0.0064
Local IP address # # 1.13 3.27 0.49 716 1.00 -
Webkit temporary storage # # 0.92 3.30 0.39 735 1.00 -
ASN (IP)   0.91 3.17 0.76 43 3.00 -
Battery discharging time # # 0.75 1.95 0.48 1007 1.00 0.0860
Battery level # # 0.73 2.36 0.75 99 1.00 0.0935
RTT-MS  # 0.56 5.43 2.00 170 2.00 -
Hour   0.23 4.06 2.31 24 4.00 -
Region (IP)   0.15 1.20 0.31 16 1.71 -
Weekday and hour   0.15 6.72 2.78 145 4.00 0.2117

Significantly higher than the baseline: * p < 0.05 ** p < 0.01
We omitted p-values of 1.0 for readability reasons.
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